Sylvester's double sums: An inductive proof of the general case
نویسندگان
چکیده
In 1853 J. Sylvester introduced a family of double sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. In 2009, in a joint work with C. D’Andrea and H. Hong we gave the complete description of all the members of the family as expressions in the coefficients of these polynomials. More recently, M.-F. Roy and A. Szpirglas presented a new and natural inductive proof for the cases considered by Sylvester. Here we show how induction also allows to obtain the full description of Sylvester’s double-sums.
منابع مشابه
An elementary proof of Sylvester's double sums for subresultants
In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester’s formula was also recently proved by Lascoux and Pragacz by using multi-Schur functions and divided differences. In this paper, we provide an elementary proof that uses only basic properties of matrix multiplication and Vandermonde determi...
متن کاملSylvester's double sums: The general case
In 1853 Sylvester introduced a family of double sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. A question naturally arises: What are the other members of the family? This paper provides a complete answer to this question. The technique that we devel...
متن کاملThe Basic Theorem and its Consequences
Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...
متن کاملAn Inductive Proof of the Berry-Esseen Theorem for Character Ratios
Bolthausen used a variation of Stein's method to give an inductive proof of the Berry-Esseen theorem for sums of independent, identically distributed random variables. We modify this technique to prove a Berry-Esseen theorem for character ratios of a random representation of the symmetric group on transpositions. An analogous result is proved for Jack measure on partitions.
متن کاملA generalization of Sylvester's identity
We consider a new generalization of Euler's and Sylvester's identities for partitions. Our proof is based on an explicit bijection.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Comput.
دوره 47 شماره
صفحات -
تاریخ انتشار 2012